ASSESSING THE COST IMPLICATION OF USING GSM BY UNDERGRADUATE STUDENTS IN NIGERIA: A CASE STUDY OF ESUT STUDENTS

Dr. Linus Ogboshi
Department of Mass Communication
Enugu State University of Science and Technology

Abstract
The study examined the cost implication of using GSM by undergraduates in Nigeria, using the students of Enugu State University of Science and Technology as a case study. The researcher adopted survey research method, and questionnaire was used as a measuring instrument, in the collection of data for the study. The data collected were analysed statistically with the aid of tables and percentages. The hypotheses formulated for the study were tested with the aid of a statistical tool, chi square (χ^2). The results of the study among others showed that the cost of GSM services are beyond the reach of undergraduate students. It also showed that the students do recharge their phones, while some have multiple phones. This situation has greatly affected their finances. The researcher consequently made recommendations on how to redress the situation.

INTRODUCTION
Communication makes human society and keeps it alive through shared interactions. It promotes peace and stability through effective resolution of conflicts. It facilitates development in every sphere of living through shared discoveries, experimentation and intellectual stimulation. Communication promotes better understanding between the rulers and the ruled. This is the reason why the government of every nation, international organizations and other agencies place emphasis in development communication. The world is fast becoming a global village and a necessary tool for this process is communication, of which, telecommunication is a key player. The quantum development in the telecommunications industry all over the world is very rapid, as one innovation replaces another in matter of weeks. A major breakthrough is the wireless telephone system, which comes in either fixed wireless telephone lines on the Global System of Mobile communications (GSM).
Communication no doubt, is a major driver of any economy. Emerging trends in socio-economic growth shows a high premium being placed on information and communication technology (ICT) by homes, organizations, and nations.

Nigeria is not left out in this race for rapid development as the nation’s economy has been subjected to years of economic reversal via mismanagement and bad leadership. The Nigerian Telecommunications sector was grossly underdeveloped before the sector was allowed to experience a boom via, deregulation that gave way to individual participation. These licenses allowed Private Telephone Operators (PTOs), to roll out both fixed and wireless telephone lines, and analogue mobile phones.

The deregulation policy of government as introduced in 1992, resulted in the deregulation policy of the telecommunication sector, with decree 75 of 1992 (as amended by Decree 30 of 1998) which established National Communications Commission (NCC) which facilitates entry into markets for telecommunications services process applications and gives licenses to private communication companies and regulates their operations in the country. The deregulation of telecommunication led to the emergence of private communication companies that provide GSM services to the people.

Some of the companies that provides communication services include; MTN, Zain, Globacom, Etisalat etc. These communication companies have subscribers running into millions including civil servants, business people, students, military and paramilitary and other people from all walks of life. The introduction of GSM has revolutionalized the communication industry in Nigeria and the world over. Both the poor and the rich now use telephone in the contemporary day.

Its benefits include; accessibility, cost effectiveness, portability, employment generation, entertainment, instant delivery of messages, various business transactions, national development and many others. Okoro and Barikai (2006) said that all the problems inherent with the use of telephone before the advent of GSM have become a thing of the past.

Agba (2001) opined that the GSM have become the fastest growing communication system in the world.

OBJECTIVES OF THE STUDY

The main objective of this study is to assess the cost implication of using GSM services by undergraduates in Nigeria, using Enugu State University of Science and Technology students as a case study.

The study is also geared toward streamlining the use of GSM services by students of tertiary institutions vis-à-vis their academic pursuit.

The study would also make suitable recommendations based on the findings of the study.

POPULATION OF THE STUDY

The population of the study is the students of ESUT. The population size is 22,504. This comprises students from various faculties in the institution.
A sample of 393 was derived from the population of study with a statistical tool of Taro Yamane formula which is stated as

\[
\frac{1 + N (e)^2}{n} = \text{Desired sample size} \quad n = 22,504 \quad \text{n} = \frac{22,504}{1 + 22,504 (0.05)^2} \quad 1 + 75.26
\]

\[
\frac{1 + 22,504 (0.0025)}{n} = \frac{393,014}{n} = 393
\]

Thereafter, a random sampling was used in selecting the respondents and the administration of the questionnaire.

RESEARCH METHOD

The researcher used survey research method. This method was chosen because of its appropriateness for the study. The study is a descriptive study, which collects data from the respondents and describes them.

THEORETICAL FRAME WORK

This study is anchored on the uses and gratifications theory. Uses and gratification theory has become the most popular and important approach to the study of mass communication (Swanson 1979). Also some contemporary communication theorists argue that the theory has made substantial contributions to our understanding of the mass communication process.

The uses and gratification theory is audience centred, asking what people do with media, rather than what the media do to the people. It attempts to explain why people use the mass media as well as the uses and functions of the media for individuals, groups, and society in general. Rubin (1985) states that uses and gratification theory is grounded in a “functional paradigm of social influence”. Since the functional approach examines the relationships between the media, individuals, and society, it represents the systems perspective. Rubin also argues that mass communication represents one social system or sub-system of society. One belief of the systems approach is that, a change in one part of the system will of necessity, cause a change in another part of the system.

The uses and gratification theory has been summarized as concerned with the social and psychological origins of needs which generate expectations of the mass media or other sources which lead to differential patterns of media exposure or engagement in other activities, resulting in need gratification and other consequences perhaps mostly unintended one (Blemler & Katz 1974).

It is a theory that is audience centred, asking what people do with media rather than what the media do to the people. Some of the needs satisfied by media include; surveillance, excitement, guidance, relaxation, entertainment, escape, self and personal identity, social contact, and information acquisition.
Folarin (2001) was of the opinion that the theory is basically concerned with the questions of who uses which media, which content, and for what reasons. The theory is concerned with the kind of media, the people use, how they use them and the gratification they expect from its usage.

West and Turner 2004 stated that the theory is an extension of needs and motivation theory propounded by Abraham Maslow. His hierarchy of needs theory states that, satisfying one needs gives rise to another.

This theory is very necessary because it relates to the study, which is the use of GSM services by students. They use the telephones because they needed them to carry out their academic and social responsibilities. This theory is the base on which this study stands. Since people use GSM services for the satisfaction (gratification) they will get, the uses and gratification is now in tandem with this study.

RESEARCH QUESTIONS
1. Can students afford the cost of GSM services?
2. How often does the students recharge their phones?
3. Has the use of mobile phone affected the finances of the undergraduate students negatively?
4. Does the undergraduate students use multiple phones?

HYPOTHESES
The following null hypotheses were formulated for the study.
1. Ho: The cost of GSM services are beyond the reach of the undergraduate students.
 Hi: The cost of GSM services are not beyond the reach of the undergraduate students.
2. Ho: Students in tertiary institutions rarely recharge their phones.
 Hi: Students in the tertiary institutions do recharge their phones frequently.
3. Ho: The use of GSM services affect the finances of the undergraduate students in any way.
 Hi: The use of GSM services does not affect the finances of the undergraduate students.
4. Ho: Students in the tertiary institutions use multiple phones.
 Hi: Students in tertiary institutions does not use multiple phones.

QUESTIONNAIRE ADMINISTRATION AND RETURN

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>FREQUENCY</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALID RETURNED</td>
<td>386</td>
<td>98.2%</td>
</tr>
<tr>
<td>INVALID RETURNED</td>
<td>5</td>
<td>1.3%</td>
</tr>
<tr>
<td>NOT RETURNED</td>
<td>2</td>
<td>0.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>393</td>
<td>100%</td>
</tr>
</tbody>
</table>
From the table above, out of the 393 questionnaire administered, 2 or 0.5% of the questionnaire were not returned. 5 or 1/3% were badly filled, hence invalid, while 386 or 98.2% were the useful once (valid).

HYPOTHESIS ONE
Ho: The cost of GSM services are beyond the reach of the undergraduate students.
Hi: Undergraduate students can comfortably afford the cost of GSM services.

OPERATIONALIZATION:
Data generated from question 8 on the questionnaire was used in testing this hypothesis.

CONTIGENCY TABLE FOR HYPOTHESIS ONE

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MALES</th>
<th>FEMALES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFORDABLE</td>
<td>96</td>
<td>103</td>
<td>199</td>
</tr>
<tr>
<td>NOT AFFORDABLE</td>
<td>93</td>
<td>94</td>
<td>187</td>
</tr>
<tr>
<td>TOTAL</td>
<td>189</td>
<td>197</td>
<td>386</td>
</tr>
</tbody>
</table>

Number in bracket represents the expected frequency as calculated hereunder.

\[
EF = \frac{TR \times TC}{GT} \quad \text{Total Rows x Total Columns} \\
\quad \text{Grand Total}
\]

<table>
<thead>
<tr>
<th>CELLS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>189 X 199 = 97.4</td>
<td>386</td>
</tr>
<tr>
<td>(2)</td>
<td>189 X 187 = 91.6</td>
<td>386</td>
</tr>
<tr>
<td>(3)</td>
<td>197 X 199 = 101.6</td>
<td>386</td>
</tr>
<tr>
<td>(4)</td>
<td>197 X 187 = 95.4</td>
<td>386</td>
</tr>
</tbody>
</table>

X2 COMPUTATION FOR HYPOTHESIS ONE

<table>
<thead>
<tr>
<th>O</th>
<th>E</th>
<th>O-E</th>
<th>(O-E)^2</th>
<th>(\frac{(O-E)^2}{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>97.4</td>
<td>-1.4</td>
<td>1.96</td>
<td>0.0201</td>
</tr>
<tr>
<td>93</td>
<td>91.6</td>
<td>1.4</td>
<td>1.96</td>
<td>0.0214</td>
</tr>
<tr>
<td>103</td>
<td>101.6</td>
<td>1.4</td>
<td>1.96</td>
<td>0.0193</td>
</tr>
<tr>
<td>94</td>
<td>95.4</td>
<td>-1.4</td>
<td>1.96</td>
<td>0.0205</td>
</tr>
<tr>
<td>386</td>
<td>386</td>
<td></td>
<td>0.0813</td>
<td></td>
</tr>
</tbody>
</table>
X^2, value calculated = 0.0813

\[d.f = (r - 1) (c - 1) = (\text{Rows} - 1) \times (\text{Columns} - 1) \]

On the contingency table, we have 2 rows and 2 columns.

\[\therefore \text{Degree of freedom} = (2 - 1) (2 - 1) = 1 \times 1 = 1 \]

Table value determination

At 0.05 probability level, meeting at 1 degree of freedom, the table value is 3.8416.

DECISION RULE BASED ON RESULT:

Since the \(X^2 \) calculated (0.0813) is less than the table value (3.8416), we do not reject \(H_0 \). The null hypothesis is accepted since it did not get to the cut off point of 3.8416.

INTERPRETATION:

The result of the test shows that the calculated value \((X^2) \) fell below the acceptance region of 3.8416. This means that the affordability of GSM service is beyond the undergraduates. The differences between the male and female responses are not significant and could therefore have been by chance.

It must be pointed out however that the non-rejection of the null hypothesis \((H_0) \) does not in any way prove that there is no difference between male and female undergraduate student’s ability to afford GSM costs. Rather, it simply means that the existing difference is not significant (at 5% significance level). Chances could have been responsible for the difference.

By implication, the result of the test shows that the costs of GSM services are beyond the reach of the undergraduate students. This hypothesis did not get statistical support of the data used for the test.

HYPOTHESIS TWO

\(H_0: \) Students in tertiary institutions rarely recharge their phones.

\(H_1: \) Undergraduate students do recharge their phones frequently.

OPERATIONALIZATION:

Data generated from question 9 on the questionnaire was used in testing this hypothesis.

CONTINGENCY TABLE FOR HYPOTHESIS TWO

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MALES</th>
<th>FEMALES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFTEN</td>
<td>68 (1)</td>
<td>146 (4)</td>
<td>214</td>
</tr>
<tr>
<td>RARELY</td>
<td>74 (2)</td>
<td>52 (5)</td>
<td>126</td>
</tr>
<tr>
<td>NO RECHARGE</td>
<td>27 (3)</td>
<td>19 (6)</td>
<td>46</td>
</tr>
<tr>
<td>TOTAL</td>
<td>169</td>
<td>217</td>
<td>386</td>
</tr>
</tbody>
</table>

Numbers in brackets represent the Expected Frequencies as calculated hereunder.

\[\text{EF} = \frac{\text{TR} \times \text{TC}}{\text{GT}} = \frac{\text{Total Rows} \times \text{Total Columns}}{\text{Grand Total}} \]

CELLS
X^2 COMPUTATION FOR HYPOTHESIS TWO

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>E</th>
<th>O-E</th>
<th>(O-E)^2</th>
<th>(O-E)^2 / E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>68</td>
<td>93.7</td>
<td>-25.7</td>
<td>660.49</td>
<td>7.0489</td>
</tr>
<tr>
<td>0</td>
<td>74</td>
<td>55.2</td>
<td>18.8</td>
<td>353.44</td>
<td>6.4029</td>
</tr>
<tr>
<td>0</td>
<td>27</td>
<td>20.1</td>
<td>6.9</td>
<td>47.61</td>
<td>2.3687</td>
</tr>
<tr>
<td>0</td>
<td>146</td>
<td>120.3</td>
<td>25.7</td>
<td>660.49</td>
<td>5.4904</td>
</tr>
<tr>
<td>0</td>
<td>52</td>
<td>70.8</td>
<td>-18.8</td>
<td>353.44</td>
<td>4.9921</td>
</tr>
<tr>
<td>0</td>
<td>19</td>
<td>25.9</td>
<td>-6.9</td>
<td>47.61</td>
<td>1.8382</td>
</tr>
<tr>
<td>0</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
<td>28.1412</td>
</tr>
</tbody>
</table>

X^2, calculated value = 28.1412

Degree of freedom = (r – 1) (c – 1)

On the contingency table, we have 3 rows and 2 columns

Degree of Freedom = (3 – 1) (2 – 1) = 2 x 1 x 2df

DETERMINATION OF TABLE VALUE:
At 0.05 probability level meeting at 2 degree of freedom, the table value is 5.991

DECISION RULE BASED ON RESULT:
The null hypothesis is hereby rejected in favour of the alternate hypothesis (H1), since the calculated value (28.1412) is greater than the tabulated value (5.991).

INTERPRETATION:
The result of the test carried out indicated that the calculated (X^2) value beat the cut off mark of 5.991 (acceptance region). The implication here is that much difference exists in undergraduates’ attitudes towards recharging their phones. The differences are largely significant. Chances could not have been responsible for the difference.
It is hereby submitted that undergraduate students do recharge their phones frequently. This hypothesis got statistical support of the data used for the test.

HYPOTHESIS THREE

Ho: The use of GSM services does not affect the finances of the undergraduate students in any way.

Hi: The finances of the undergraduate students is greatly affected by the use of GSM services.

OPERATIONALIZATION:

Data generated from question 12 on the questionnaire was used in testing this hypothesis

CONTIGENCY TABLE FOR HYPOTHESIS THREE

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MALES</th>
<th>FEMALES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>109 (1)</td>
<td>92 (4)</td>
<td>201</td>
</tr>
<tr>
<td>NO</td>
<td>56 (2)</td>
<td>78 (5)</td>
<td>134</td>
</tr>
<tr>
<td>NO INDIFFERENT</td>
<td>32 (3)</td>
<td>19 (6)</td>
<td>51</td>
</tr>
<tr>
<td>TOTAL</td>
<td>197</td>
<td>189</td>
<td>386</td>
</tr>
</tbody>
</table>

The figure in bracket represents the expected frequencies as calculated hereunder:

\[EF = \frac{TR \times TC}{GT} = \frac{\text{Total Rows x Total Columns}}{\text{Grand Total}} \]

CELLS

(1) \[197 \times 201 = \frac{102.6}{386} \]

(2) \[197 \times 134 = \frac{68.4}{386} \]

(3) \[197 \times 51 = \frac{26.0}{386} \]

(4) \[189 \times 201 = \frac{98.4}{386} \]

(5) \[189 \times 134 = \frac{65.6}{386} \]

(6) \[189 \times 51 = \frac{24.9}{386} \]
X2 COMPUTATION FOR HYPOTHESIS THREE

<table>
<thead>
<tr>
<th>O</th>
<th>E</th>
<th>O-E</th>
<th>(O-E)^2</th>
<th>(O-E)^2 E</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>102.6</td>
<td>6.4</td>
<td>40.96</td>
<td>0.3992</td>
</tr>
<tr>
<td>56</td>
<td>68.4</td>
<td>-12.4</td>
<td>153.76</td>
<td>2.2479</td>
</tr>
<tr>
<td>32</td>
<td>26.0</td>
<td>6</td>
<td>36</td>
<td>1.3846</td>
</tr>
<tr>
<td>92</td>
<td>98.4</td>
<td>-6.4</td>
<td>40.96</td>
<td>0.4163</td>
</tr>
<tr>
<td>78</td>
<td>65.6</td>
<td>12.4</td>
<td>153.76</td>
<td>2.3439</td>
</tr>
<tr>
<td>19</td>
<td>24.9</td>
<td>-5.9</td>
<td>34.81</td>
<td>1.3979</td>
</tr>
<tr>
<td>386</td>
<td></td>
<td></td>
<td></td>
<td>8.1898</td>
</tr>
</tbody>
</table>

X^2, calculated value = 2.1898
Degree of freedom determination = (r – 1) (c – 1)
On the contingency table there are 3 rows and 2 columns.

\[
\text{D.f} = (3 - 1)(2 - 1) = 2 \times 1 = 2 \text{ df}
\]

At 5% level of significance and 2 de of freedom, the table value is 5.991.

DECISION RULE BASED ON REUSLT:
Since X^2 calculated (8.1898) is greater than the tabulated value (5.99147), the null hypothesis is hereby rejected and the alternate hypothesis (Hi) accepted in its place.

INTERPRETATION:
The test result shows that the calculated value polled above the acceptance region of 5.991. This means that the finances of undergraduate students are greatly affected by the use of GSM services.

The difference in the frequency did not occur by chance, hence the acceptance of the H_i.
There is a significant difference between the Observed and Expected frequencies. This hypothesis got statistical support of the data used for the test.

HYPOTHESIS FOUR
Ho: Undergraduate students does not use multiple phones.
Hi: Students in tertiary institutions are used to owning multiple phones.

OPERATIONALIZATION:
Data generated from question 6 on the questionnaire was used in testing this hypothesis

CONTIGENCY TABLE FOR HYPOTHESIS FOUR

<table>
<thead>
<tr>
<th>RESPONSE</th>
<th>MGT SCI</th>
<th>ENGINEERING</th>
<th>SOC. SCI</th>
<th>LAW</th>
<th>EDU.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>78 (1)</td>
<td>63 (3)</td>
<td>39 (5)</td>
<td>24 (7)</td>
<td>51 (9)</td>
<td>255</td>
</tr>
<tr>
<td>NO</td>
<td>18 (2)</td>
<td>34 (4)</td>
<td>19 (6)</td>
<td>42 (6)</td>
<td>18 (10)</td>
<td>131</td>
</tr>
<tr>
<td>TOTAL</td>
<td>96</td>
<td>97</td>
<td>58</td>
<td>66</td>
<td>69</td>
<td>386</td>
</tr>
</tbody>
</table>

The figures in bracket represents the Expected Frequencies as calculated hereunder.
Expected Frequency Calculation

\[EF = \frac{\text{Total Rows} \times \text{Total Columns}}{\text{Grand Total}} = \frac{\text{TR} \times \text{TC}}{\text{GT}} \]

CELLS

(1) \[96 \times 255 = 63.4 \]

\[\frac{386}{386} \]

(2) \[96 \times 131 = 32.6 \]

\[\frac{386}{386} \]

(3) \[97 \times 255 = 64.1 \]

\[\frac{386}{386} \]

(4) \[97 \times 131 = 32.9 \]

\[\frac{386}{386} \]

(5) \[58 \times 255 = 38.3 \]

\[\frac{386}{386} \]

(6) \[58 \times 131 = 19.7 \]

\[\frac{386}{386} \]

(7) \[66 \times 255 = 43.6 \]

\[\frac{386}{386} \]

(8) \[66 \times 131 = 22.4 \]

\[\frac{386}{386} \]

(9) \[69 \times 255 = 45.6 \]

\[\frac{386}{386} \]

(10) \[69 \times 131 = 23.4 \]

\[\frac{386}{386} \]

X^2 COMPUTATION FOR HYPOTHESIS FOUR

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>E</td>
<td>O-E</td>
<td>(O-E)^2</td>
<td>(O-E)^2 E</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>78</td>
<td>63.4</td>
<td>14.6</td>
<td>213.16</td>
<td>3.3621</td>
</tr>
<tr>
<td>18</td>
<td>32.6</td>
<td>-14.6</td>
<td>213.16</td>
<td>6.5387</td>
</tr>
<tr>
<td>63</td>
<td>64.1</td>
<td>-1.1</td>
<td>1.21</td>
<td>0.0189</td>
</tr>
<tr>
<td>34</td>
<td>32.9</td>
<td>1.1</td>
<td>1.21</td>
<td>0.0368</td>
</tr>
<tr>
<td>39</td>
<td>38.3</td>
<td>0.7</td>
<td>0.49</td>
<td>0.0128</td>
</tr>
<tr>
<td>19</td>
<td>19.7</td>
<td>-0.7</td>
<td>0.49</td>
<td>0.0249</td>
</tr>
<tr>
<td>24</td>
<td>43.6</td>
<td>-19.6</td>
<td>384.16</td>
<td>8.8110</td>
</tr>
<tr>
<td>42</td>
<td>22.4</td>
<td>19.6</td>
<td>384.16</td>
<td>17.15</td>
</tr>
<tr>
<td>51</td>
<td>45.6</td>
<td>5.4</td>
<td>29.16</td>
<td>0.6395</td>
</tr>
<tr>
<td>18</td>
<td>23.4</td>
<td>-5.4</td>
<td>29.16</td>
<td>1.2462</td>
</tr>
<tr>
<td>386</td>
<td></td>
<td></td>
<td>37.8409</td>
<td></td>
</tr>
</tbody>
</table>

\[X^2, \text{value} = (\text{Calculated}) = 37.8409 \]
Degree of freedom determination = \((r - 1)(c - 1)\)

Here, there are 2 rows and 5 columns in the contingency table

\[\therefore \text{D.f } = (2-1)(5-1) = 1 \times 4 = 4 \text{ df} \]

TABLE VALUE DETERMINATION

At 0.05 probability living at 4 degree of freedom the table value is 9.488

DECISION RULE BASED ON RESULT:

Since the \(X^2\) calculated value (34.8409) is greater than the table value (9.488), we reject the null hypothesis in favour of the alternate hypothesis.

INTERPRETATION:

The result shows that the calculated \((X)^2\) value is far above the acceptance region of 9.488. This means that the possibility of undergraduate using multiple phones is high and could therefore not have happened by chance.

It must be stated that the rejection of the null hypothesis does not in any way prove that there is no difference between undergraduates in their choice of owning multiple phones. Rather, it simply means that the existing difference is significant (at the given level of significance of 5%). Chance could not have been responsible for the difference.

The implication here is that students in tertiary institutions are used to owning multiple phones. The tested hypothesis got statistical support of the tested data.

SUMMARY OF FINDINGS

In this study, the following findings were made.

1. It showed that the GSM services cost much money to the students. It is beyond their reach.
2. They spent much money in recharging their phones, to the detriment of other academic finance—demanding needs.
3. Some students have multiple GSM handsets which consumes more money than those who have single phones.
4. It has affected their finances.

RECOMMENDATIONS

It is strongly recommended that students should control the manner and the way they make phone calls. They should avoid irrelevant discussions and make important calls, especially as it concerns academic matters. They should strike a balance between phone usage and their academic pursuit.

Undergraduate students must avoid the temptation of owing multiple phones, most especially now that GSM services are becoming more qualitative in Nigeria. They must also understand and apply the popular aphorism that you must “cut your coat according to your size”.

109
References

